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Nonunique Solutions of Kinetic Equations 
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Two very hard particle models are solved and the nonuniqueness of the initial 
value problem for these (model) kinetic equations is explicitly demonstrated, 
when distribution functions decaying sufficiently slowly are permitted. The 
intimate connection between nonuniqueness and violation of conservation laws 
is made evident. The associated eigenvalue problems are solved. Finally, the 
general implications of these results for kinetic equations with transition rates 
that are increasing functions of the state variable, are stated in the form of a 
number of conjectures. They affect the solution of the Boltzmann equation for 
realistic intermolecular interactions when the collision rate gl(g, X) is an increas- 
ing function of the relative velocity g. 

KEY WORDS: Linear and nonlinear Boltzmann equation; initial value 
problem in kinetic theory; violation of mass or energy conservation; high 
energy tails of distribution functions; eigenfunctions with positive and 
negative eigenvalues. 

1. INTRODUCTION 

Rate equations or kinetic equations describe the time evolution of the 
probability distribution F(x, t) over states x. A rate equation for a system 
of reacting polymers was recently discussed by Aizenman and Bak. (l) They 
found that the initial value problem only has a unique solution provided 
that the distribution function F(x, t) decays faster than x -3 for large x, 
whereas existence of the conserved quantity (total mass in their case) only 
requires F(x, t) to fall off faster than x-2. 

Closely related to this are results obtained by Cornille and Gervois, (2~ 
who studied the eigenvalue problem associated with the linearized Boltz- 
mann equation for hard spheres, and the corresponding linear problem for 
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the case of self-diffusion (or neutron transport). Finally, Piasecki and 
Pomeau <3) very recently found exact solutions to the initial value problem 
associated with a hard sphere Rayleigh particle in a thermal bath at zero 
temperature. If velocity distribution functions, decaying sufficiently slowly 
for large velocities, are allowed, they showed that the solution of their 
initial value problem is not unique. 

In this paper we shall discuss these problems in the context of the 
so-called very hard particle (VHP) models introduced by Ernst and 
HendriksJ 4-6~ These are (mathematical) model Boltzmann equations that 
can be solved exactly. In Section 2 we demonstrate the intimate connection 
between the conservation laws and the nonuniqueness expected from the 
analogy with the Aizenman-Bak model. Section 3 gives the exact solution 
of the initial value problem for the linear case of self-diffusion. It is 
explicitly shown that for nonsingular distribution functions decaying faster 
than x-2, where x stands for the energy variable, the solution of the initial 
value problem is unique. When distributions decaying like x-2 are allowed, 
the solution is no longer unique. In fact, an infinite number of solutions 
exist, parametrized by an arbitrary, time-dependent, total number of parti- 
cles N(t). In Section 4 we discuss the nonlinear model and arrive at similar 
conclusions except that nonuniqueness is now associated with x-3 decay, 
and is parametrized by an arbitrary, time-dependent, total energy E(t). The 
associated eigenvalue problems are discussed in Section 5 and a set of 
eigenfunctions are found that have a continuous spectrum, live outside the 
standard Hilbert space of the Boltzmann problem, and violate one of the 
conservation laws. Our results, and those referred to above, have general 
implications for kinetic equations with transition rates that are increasing 
functions of the state variable. These implications are stated in Section 6 in 
the form of a number of conjectures. 

2. C O N S E R V A T I O N  LAWS AND THE VHP MODEL 

The problem at hand is a general one associated with kinetic equations 
with transition rates that are increasing functions of the state variable. 
However, in order to carry out explicit calculations, we shall specialize to a 
simple equation of the Boltzmann type, introduced by Ernst and Hendriks 
and called the vary hard particle (VHP) model. <6~ 

Let F(x, t) be the distribution function for the energy x at time t. The 
VHP model is defined by the evolution equation 

~tF(x,t) = f ~ f  dxldx'dxxw(xxllx'xl)[F(x',t)F(x'l,t)- F(x,t)F(xl,t)] 
(1) 
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where the transition rate w(xxllx'x'l) for a binary interaction (x, x l )~  
(x', x'l) is given as 

w(xx, lx 'X ' l )  = 8 (x  + x,  - x ' -  (2) 

An alternative form of (1) is 

An exact solution of Eq. (3) in terms of the initial distribution F(x, 0) was 
given by Ernst and Hendriks. (5) 

The purpose of the present analysis is to show the following: (i) The 
Ernst-Hendriks solution is indeed the unique solution, /f one restricts the 
class of allowed functions F(x, t) to nonsingular ones (to be defined below) 
which, for all t/> 0 and large x, decay faster than x -3 (i.e., at least as fast 
as x - 3 - ' ,  where e > 0); (ii) If, however, functions decaying asymptotically 
like x -3  (or slower) are permitted, infinitely many solutions to the initial 
value problem exist. Analogous statements will be proved for the linear 
VHP-model for self diffusion, where nonuniqueness is associated with 
decay like x -2  rather than x-3  

This nonuniqueness is intimately connected with the conservation laws 
of the models. Before we enter into a detailed discussion of explicit 
solutions, we shall indicate this connection by reexamining the standard 
proofs of the conservation laws for the number o f  particles N(t) and the 
energy E(t) defined by 

N(t)  = f0~176 dxF(x,t); E(t)=fo~176 dxxF(x,t) (4) 

We assume N(t) and E(t) to be finite. Taking the appropriate moments of 
(3) and freely interchanging the order of integrations, one finds that 

N = 2 E . N - 2 E . N  

where 

E = ~ . N +  E 2 - Z . N - E  2 

(5) 

(6) 

x (  t) = foo dx x2r (  x, t) 

Since N(t), E(t) < ~ all quantities in (5) are well defined, N = 0 and thus 
N(t) = N = const. If, in addition, F(x, t) decays faster than x -3 for large x, 
Z is also well defined, and E(t) = E = const. This constitutes the standard 
proof of the conservation laws. If, however, F(x, t) ~ x -  3, ~ does not exist, 
the expression for/~ is of the form " ~  �9 0", and a closer inspection of the 
steps leading to (6) becomes necessary. One easily shows that in the 
marginal case of F(x,t)~ x -3, 12 can take any desired value. Such 
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solutions correspond to an influx of energy from infinite energies at an 
(arbitrary) rate/~(t). 

In the above argument it was taken for granted that in the computa- 
tion of time derivatives of conserved quantities, (N and E here) the 
operations 3/Ot and f~176 commute. This amounts to a regularity condi- 
tion on F(x, t). Whenever we restrict ourselves to nonsingular F(x, t), the 
implication is that this regularity condition is met. 

Similar statements can be made about the VHP model for a tagged 
particle in a bath of similar particles in thermal equilibrium. One derives 
the kinetic equation for this model from (3) by replacing F(u - x, t) and 
F(u - y ,  t) by the equilibrium distributions e-u+x and e-U+Y, respectively. 
That is, 

o r  

OtF(x, ,)= f ~ due-u foU dy[eYF(y,t) - eXF(x,t) ] (7) 

(~t + x + 1)F(x,t)= fxx ~176 due-UfooUdyeYF(y,t) (8) 

Note that this equation can also be interpreted as describing a Rayleigh 
particle of mass M and with VHP interactions with an equilibrium bath of 
particles with mass m. It is easy to show that the only effect of a larger 
mass is to rescale the time to ~- = tm/M. 

In the case of the linear VHP model, only N(t) is a conserved quantity 
and integration over (8) yields 

N = E + N - E - N  
If E(t)< oo, i.e., if F(x,t) decays faster than x -2, .N = 0 and particle 
conservation is proved. In the marginal case when F(x, t )~  x -z, E does 
not exist. Such solutions correspond to an influx of particles from infinite 
energies at an (arbitrary) rate N(t), as shown explicitly in Section 3. 

In the next section we shall give an explicit solution of (8) in the 
general case when functions F(x, t) decaying like x -2 (or slower) are 
allowed and, correspondingly, time-dependent N(t) are permitted. We 
return to the nonlinear equation in Section 4. 

3. EXPLICIT SOLUTIONS FOR THE LINEAR VHP MODEL 

The kinetic equation (8) can be solved in terms of the Laplace 
transform of F(x, t) in the energy variable, defined as 

G(z, t) = (~ dx e-ZXF(x, t) (9) 
dO 
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transformation of (8) yields the first-order partial differential Laplace 
equation 

[ 1 ] G ( z , t ) = l G ( o , t )  (10) Gt(z , t ) -  Gz(z,t ) + 1 + z(z-+ 1) 

where G t and Gz are partial derivatives. As a result of the discussion of the 
previous section, we shall allow the number of particles to depend on time, 
stipulating the initial value to be unity: 

G(O,t) = N(t), N(O) = 1 ( t l )  

The solution of (10) may be obtained by a transformation of variables 

Z = X ,  g q - t ~ u  

G ( z , t )  = G ( x , u  - x )  =-- y u ( x )  (12) 

N(t) = G(O, t) = G(O, u - x) = nu(X ) 

In these variables, Eq. (10) reduces to the following ordinary differential 
equation, u playing the role of a hidden parameter 

y[ , -  1+ x ( x +  1) y~' + x - 0  (13) 

The general solution of (13) contains one integration constant which can be 
an arbitrary function A (u) of u: 

x e  x xeX x y.(x) A(.)+ f~ - dynu(y) -d-f x + l  

In terms of the original variables the solution becomes, 

ze z �9 d ( e  -y ) G(z , t )= ze~ A ( z + t ) + ~ (  d y N ( z + t - y )  (14) 
~ - f  z + l j~ ~ -7 -  

The arbitrary function A can be determined in terms of the Laplace 
transform of the initial energy distribution F(x, O) = Fo(x ) 

z ~ l f ~  d ( e - y )  (15) zeZ A (z) + d.y N(z - y) -~y - -7  C ( z ,  o)  - a o ( Z )  - z + 

Substitution of (15) into (14) gives, after a partial integration 

G ( z , t ) -  N(t) ze- '  - z +---f + (z + 1)(z + t) [ (z  + t + 1 ) a o ( Z  + t )  - l ]  

f0 e" z e - '  td,  U ( , )  (16) 
z + l  z + t - , c  
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The general solution for F(x, t) follows from (16) by Laplace inversion as 

d [e-(X+Os (17a) F(x't)= N(t)e-X dx 

and is valid for all t > o. Here 

[y;yOo ] s (17b) d a.Fo(u) + O(y) = ~ e 

and N(t) is an arbitrary continuous function of t. If N(t) would have a 
discontinuity at t = t a, then F(x, t) in (17) is not a solution at t = t o. 

The solution (17) explicitly displays the nonuniqueness of the initial 
value problem (8). For any given continuous function N(t) with N(0) = 1, 
(17) solves the kinetic equation (8) for all t > 0 with the prescribed initial 
distribution F(x, O)= Fo(x ). 

On the other hand it is clear that the only source of nonuniqueness in 
(17) is the variation in time of N(t). The kinetic equation, however, gives a 
statistical description of a collision dynamics which conserves the number 
of particles. Thus solutions with a time-dependent N(t), although mathe- 
matically permitted, are clearly unacceptable from a physical point of view. 

The explicit solution also shows the intimate connection, discussed in 
Section 2, between a time-dependent N(t) and high energy tails of the form 
x -2. This connection is most easily found from an analysis of (16) for small 
z. For the moment, we shall assume that when z becomes small, Go(z ) - 1 
--~z ~-l,  with a - 2 > ~ > 0. From (16) one then finds 

G(z, t )~  N(t) + N(t)zlnz + O(z). (18) 

This singularity in G(z, t) at z = 0 corresponds to an asymptotic decay of 
F(x, t) for large x of the form 

F(x, t) ~ N(t) /x 2 (x >> 1). (19) 

As F(x,t) is a distribution function, N ( t ) >  0. A time dependent N(t) 
therefore implies high energy tails decaying like x -2. 

The reason why solutions with a large x-behavior of the form a(t)/x 2 
do not obey the law of number conservation can also be understood by 
considering the flux N(x0, t) in the total number of particles with energy 
x <~ x o where N(xo) = f~o dx F(x, t). It can be easily deduced from (8) that 

N(xo)= Xos dy F ( y ) -  e-xos176 (20) 

If x 0 is sufficiently large, it follows that ~r(x 0, t) = a(t){ 1 + 0 (x o 2)}, that is 
there is an influx of particles coming from infinite energies. The coefficient 
a(t) in the high energy tail equals the total flux N(t) of particles into the 
system. 
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Finally, we shall discuss the time evolution of the term in (16) 
containing the initial distribution Go(z), i.e., Fo(x ). Assume that Fo(x ) has 
an algebraic tail of the form Fo(x ) ~-" x-~ with a > 2. For simplicity, let 
be noninteger. The singularity with Rez < 0, closest to z = 0 which deter- 
mines the large-x behavior of F(x, t)--yields a dominant contribution 

G(z, t) ~ e-tz(z + t) ~-2 (21) 

as follows from (16) for finite t (with t < 1). 
Laplace inversion of (21) yields terms that for any finite time are 

bounded by (essentially) e x p [ - ( x  + l)t]. [Integer a's (including a = 2[) 
introduce logarithmic terms in (21), but do not alter this conclusion]. That 
is, even for a = 2 the second term in (16), evolving from Fo(x ), gives 
exponentially decaying energy distributions for finite t. The corresponding 
contribution [N0(t ) - 1 ]  to N(t) is highly singular at t = 0. Although 
No(t ) - 1 remains constant (=  0), and Ar0(t = 0 ) =  0, higher time deriva- 
tives diverge at t = 0. With n + 1 ~< a < n + 2, the first n derivatives of 
N(t) - 1 remain zero, while all higher time derivatives diverge at t = 0. 

In summary, we conclude the following: (i) Restriction of allowed 
functions to nonsingular ones decaying faster than x -2  for x >> 1, ensures a 
unique solution of the initial value problem (8). This restriction also 
guarantees the validity of the conservation law, N(t)= const. (ii) If func- 
tions decaying like x -2 are permitted, infinitely many solutions of the 
initial value problem (8) exist, parametrized by the arbitrary continuous 
nondecreasing function N(t). The coefficient in front of the x -2  tail is At(t). 
(iii) Initial algebraic decays, Fo(x ) ~--x-~ (a > 2), will for any finite time be 
changed into exponential decays, (essentially bounded by e x p [ - ( x  + 1)t]). 

4. THE NONLINEAR VHP MODEL 

We now return to the nonlinear VHP model defined by the kinetic 
equation (3). In terms of the Laplace transform in the energy variable, 
G(z, t), the number of particles and the energy are given as 

G(O, t) = N(t) = 1 

G~(0, t) = - E(t) ;  (E(0) = 1) (22) 

Since we shall always work with distribution functions for which the energy 
E(t) exists, Eq. (5) guarantees conservation of the number of particles. 
Thus, with finite E(t), no solution of (3) exists which has a time-dependent 
N(t). We can therefore put N(t) = 1 for this model. 

A Laplace transformation of (3) yields a first-order partial differential 
equation for G(z, t): 

a ,  - + E ( O c  = O / z ) ( 1  - G 2) (23) 
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When we include distribution functions decaying like x-3  for large 
energies, E(t) is not necessarily a constant. The problem is thus to solve 
(23) with an arbitrary function E(t). By a variable transformation analo- 
gous to (12), Ernst and Hendriks (5) were able to find the complete solution 
of (23) for the case E(t) = 1. For arbitrary E(t), we have only been able to 
find a perturbative solution. In the following we shall restrict ourselves to 
the linearized version of (23). 

4.1. The Linearized Case 

We assume the system to be close to the equilibrium state with a total 
energy E = 1, and linearize around the corresponding distribution, e-x:  

F(x,  t) = e-X + f (x ,  t) 
(24) 

C(z,  t) = ~ + g(z ,  t) 
z + l  

with 

fo ~ t) g(O,t) 0 dx f ( x ,  = = 
(25) 

"Jo~ = -g=(O,  0 = e ( t )  - 1 ~ e( t )  

With f, g, and c treated as small quantities, Eq. (23) linearizes to 

g t - g z +  l + z ( z + l ~  g =  (26) 

which should be solved subject to the initial conditions g(z, O) = go(Z) [and 
, (0)  = 0)l. 

In this form the problem becomes similar to Eq. (10), and the same 
technique used to solve the linear model in Section 3 gives the following 
solution for (26) for all t >/0: 

z,( t)  z2(z + t + 1) 2 
= + go(Z + t) g(z, t) (z -t- 1) 2 (z + 1)2(z + 1,)2 

- - ~ 0  e'r z2e-, t d,r ~ (z) (27) 
+ (z + 1)2 z + t - . r  

This result is completely analogous to (16) and its Laplace inversion to (17). 
It satisfies the initial condition g(z,O)= go(z), ~(0)= O, and contains the 
arbitrary continuous function c(t). The discussion at the end of Section 3 
applies also to this case with one slight modification. The last term in (27) 
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gives a dominant singularity for small z of the form 

g(z, t) - (0z21n  + 2) (28) 

corresponding to a high-energy tail 

f ( x , t ) ~ 2 ~ ( t ) / x  3 (x>> 1) (29) 

implying ~(t)>/0. A unique solution to the initial value problem and 
conservation of the energy is therefore guaranteed in this case if one 
restricts the allowed functions to those decaying faster than x -3 for high 
energies. Initial algebraic decays Fo(x ) "-~ x - "  with a > 2 [ E ( t ) <  ~! ]  will 
be changed into exponential decays for finite times. 

4,2. The Nonlinear Case 

It is obvious a priori that the nonlinear equation (23) is similar to its 
linearized version with respect to the nonuniqueness problem. For any 
given E(t), the solution of the first-order partial differential equation will 
contain an arbitrary function of the argument (z + t). This function is 
determined by the initial distribution F(x, O) = Fo(x ), but the arbitrariness 
associated with E(t) remains. Consequently, when a time-dependent energy 
is permitted, an infinite number of solutions of the nonlinear kinetic 
equation exists. 

Even without knowing the explicit form of the solution, one can 
discuss its high-energy tail. This is most conveniently done by solving (23) 
for small z. To this end we introduce 

G(z,  t) = 1 - zE( t )  + 0 (30) 

when E(t) is a continuous function of t. 
From (22) one concludes that A(z, t) vanishes faster than linearly in z 

as z ~ 0. Insertion of (30) into (23) yields, to dominant order in z, 

dA _ 2A + z2/~(t) = 0 (z ---~ 0) (3l) 

which implies that 

A(z, t) ~ --/~ (t)z 2 In z (z ~ 0) (32) 

The high-energy asymptotics of F(x, t) follows from (32) as 

F(x, t) ~ 2 E / x  3 (x >> 1) (33) 

which is precisely the same result as for the linearized problem. 
Thus, also for the nonlinear problem a unique solution (which con- 

serves energy) is guaranteed if one restricts the allowed functions F(x, t) to 
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those decaying faster than x -3. This solution (with E = 1) was found by 
Ernst and Hendriks to be 

G(z,t)  = 
q~(z + t) + (z - 1)e- '  

(z + 1)q,(z + 1) - e - '  

where ~(z) is determined from the requirement that G(z, O) = Go(z ). 

5. THE EIGENVALUE PROBLEM 

Eigenvalues and eigenfunctions are important tools in analyzing linear 
or linearized kinetic equations. It is therefore of interest to study the models 
discussed in the two previous sections from this point of view. In order to 
do so, we write the linear Boltzmann equation (7) and the linearized version 
of (3) as 

and study solutions of 
eigenvalue problem 

faFx = XF x 

In the Hilbert space defined by the inner product 

(A,B)  =s dxe~A(x)B(x) 

OfF= -f~F (34) 

the form F(x,t)= Fx(x)e -xt. This leads to the 

(35) 

(36) 

the Boltzmann operator S2 is self adjoint, i.e., (A,~2B)= (~A,B), and non 
negative-definite, i.e., (A, ~2A) > 0. 

For our models we shall explicitly demonstrate the following results: 
The eigenfunctions in this function space are orthogonal and form a 
complete set of basis functions. The spectrum consists of an isolated 
eigenvalue at X = 0 and a continuum for X >i 1. In addition, there exist 
eigenfunctions outside this Hilbert space with a continuous spectrum for 
X < 1 (X 4= 0). These eigenfunctions violate a conservation law, as found for 
the hard sphere case by Cornille and Gervois. (2) 

5.1. The Linear VHP Model 

It is convenient to start from Eq. (10). With G(z, t)= Gx(z)exp(-Xt ) 
gives the ordinary differential equation 

[ l !Gx(z)= 1Gx(O ) (37) - + 1 - x + u 1) 7 
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where a prime denotes differentiation with respect to z. The solution reads 

z ~ d y y ~ l e - ( l - x ) ( Y - 2 )  (38) Gx(z) = C e + G ( O )  - -  
z + l  " 

where C is an arbitrary normalization constant. In order for Gx(z ) to be the 
Laplace transform of an Fx(x ), it must be bounded for large positive z. 
Equation (38) offers two possibilities only: 

(i) X > 1: C ~ 0, ax(0) = 0 
(ii) h < 1: C = 0, Gx(0 ) # 0 

For h > 1 inverse Laplace transformation of (38) with C = 1 yields 

Fx(x ) = 8(x + 1 - X) - e-X-l+XO(x + 1 - X), )t > 1 (39) 

where 8(x) is the Dirac function and O(x) the step function. For X < 1 
Laplace inversion with Gx(0 ) = 1 gives 

= e -x + • ~dx s  e-2' &(x) d Y x _ y + l _ A ,  X < I  (40) 

Among all the eigenfunctions with X < 1, only the one with X = 0, i.e., 
Fo(x ) = e -x, belongs to the Hilbert space (36). This follows from the fact 
that the asymptotics of the last term in (40) for large x is 

X + 0(x-3) (41) Fx(x ) ~ -  x- 5 

in agreement with (19). 
It is evident that the eigenfunctions outside Hilbert space give time- 

dependent contributions to the number of particles. For arbitrary X < 1, the 
second term in (40) integrates to zero and the first term gives 

Nx(t ) = e -X , (  ~ dxFx(x  ) = e-X, 
d 0  

In other words, the eigenfunctions outside Hilbert space violate particle 
conservation. 

The functions Fo(x) and Fx(x ) with X > 1 form a complete orthogonal 
set of basis functions in the Hilbert space (36) and one easily verifies the 
orthogonality relation 

~ dx eXro(x)rx(x) = 0 
o k ~  

( x , x '  1) 
s  dx eXFx(x)Fx,(X) = e x-  '3(,~ - ~,') 

and the completeness relation 

eXFo(x)Fo(x ') + ~ dXeX+'-XFx(x)Fx(x ') = 3(x - x I ) 
.,'1 
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5.2. The Linearized VHP Model 

Next we turn to the eigenvalue problem for the linearized VHP model. 
The complete solution is obtained only if one does not impose any a priori 
conditions on the eigenfunctions, such as (21). Then G(z,t) satisfies the 
equation 

1 [ Gz(0)_ G 2] (42) G,- G(O)G z - Gz(O)G = z 

The eigenvalue equation is obtained when one puts 

G(z, t) - 1 + e -  X'gx(z ) (43) 
z + l  

and linearizes in gx(Z): 

g~,-II-X+z(z2 1 [ 1 2 ] g ~ , ( 0 ) - ~ l  g~,(0) (44) 
+ 1 )  g x =  ( z + l )  2 z z + l  

The prime denotes differentiation with respect to z. 
As explained in Section 2, internal consistency dictates that the solu- 

tions of (42) and (44) must conserve the number  of particles. Putting z -- 0 
in (43) one must therefore distinguish between two cases: 

(a) X v ~ O, gx(0) = 0 

(b) X = 0, gx(0) ~ 0 

The general solution of (44) in case (a) is readily found to be 

Z ' ]2e(l-a)z [ [ g~(O)fz~176 gx(z) = ( C + Y + 1 e_(,_X)y (45) 

where C is an arbitrary constant. By the same arguments as for the linear 
model, the case (a) splits into two distinct possibilities: 

(al)  X~> 1: Cve0 ,  g~,(0)-- 0 

(a2) X < l: C = 0, g~(0) ~ 0 

For X >1 l, inverse Laplace transformation of (45) yields (with C = 1) 

f~(x) = 8(x  + 1 - X) + e-X-l+X(x - 1 - h)O(x + l - X) (X ~> 1) 

(46) 

For X < 1 one finds from (45), with g~(0) = - 1 after some calculation 

X( d )2~oX Y e-y (~ < I) (47) fx(x) = (x - 1)e -x _ ~xx dy x - y + 1 - X 
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For large x, the eigenfunctions fx(x) with )t < 1 decay like - 2 ~ / / x  3 [in 
agreement with (29)] and do not belong to the Hilbert space (36) (except for 
X = 0). Furthermore, f g  dx fx(x) vanishes, whereas f ~  dx xfx(x) =/= 0, so that 
these eigenfunctions violate energy conservation. Notice that negative ei- 
genvalues are allowed. This is not in conflict with the/ / - theorem since the 
non negative-definite character of f~ can only be proved for functions 
belonging to the Hilbert space (36). 

Finally, we consider the case (b) where X = 0. The corresponding 
differential equation (44) contains two arbitrary constants, g0(0) and g;(0). 
The two independent solutions can be chosen to be 

f(o')(x) = e -x, f(o2)(x) = (x - 1)e -x  (48) 

The two solutions (48) together with the fx(x) of (46) with )t ) l, form a 
complete and orthogonal basis for the Hilbert space (36). 

6. CONJECTURES 

In this section we summarize the general arguments of Section 2, the 
explicit results in Sections 3 and 4, and certain results obtained by others, 
in a form of a few conjectures on kinetic equations for models with 
transition rates that are increasing functions of the state variable. 

To be specific, we shall consider the Boltzmann equation for a d- 
dimensional dilute gas in an isotropic and spatially uniform state: 

o,I(v,,)-- f d,,f g l (g , x ) [  f ( v ' , t ) f ( w ' , t ) -  f ( v , t ) f (w , , ) ]  (49) 

Here I (g ,  X) is the differential cross section for the collision (v, w ) ~  (v', w') 
in terms of the relative velocity g = [w - v] and the scattering angle X. The 
unit vector r~ is defined by ~ = ~' such that r~ �9 ~ = cos X. 

We shall specify the model further by assuming that the interaction 
potential has the form const,  r - ' .  In that case one has (7'6) 

gi( , x) = g ' . ( x )  (50) 

with 

v = 1 - 2 ( d -  1)/n (51) 

Maxwell molecules are defined in all dimensions as having velocity- 
independent  collision rates, i.e., y = 0 or n = 1 / 2 ( d - 1 ) .  Hard d- 
dimensional spheres correspond to n---)~, i.L, y =  1. For molecules 
"harder" than Maxweli molecules 0 < ,{ < 1. The VHP model cannot be 
derived from any Hamiltonian and corresponds to 3' = 2 (hence its name). 
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a s  

The number of particles and the energy (in suitable units) are defined 

U(,)= f d, j(v,,)= f fo dVVd-r(v,O (52) 

In order to prove that energy is conserved, i.e., that /~ = 0, one must 
calculate the difference of two integrals of the form 

f dvv2f dwf d~ a(X)[W- vlT(v,t)f(w,t) (54) 

Disregarding the well-understood problem (7) of separating the two integrals 
due to the form of a(X) at small scattering angles, one arrives by simple 
power counting at v-integrals of the type 

dv vd-'+:+'f(v, 0 (55) 

The interchange of the order of integrations used in the standard proof of 
/~ -- 0 requires that the integral (55) converges, i.e., that f(v, t) decays faster 
than 1 /v  d+2+v. For positive y this is a more stringent requirement than 
that necessary for the existence of the energy (53). The problem therefore 
seems to contain all the features discussed in Sections 2-4, and one is led to 
the following conjectures: 

(1) For nonsingular velocity distributions f(v, t) that decay faster than 
1 /v  d+z+v both N and E are conserved quantities and the initial value 
problem has a unique solution. 

(2) When distributions decaying like 1 / v a+ 2 + v are allowed, there exist 
an infinite number of solutions of the initial value problem, parametrized 
by the arbitrary function E(t). 

(3) Similar statements can be made about the self-diffusion or 
Rayleigh particle problem with (d + ,/) replacing (d + 2 + ~,) and N(t) 
replacing E( t). 

(4) There exists a continuous spectrum of eigenfunctions with - ~  
< )t < )t 0, excluding )t = 0, where )to is a model-dependent positive con- 
stant. For y > 0, the corresponding eigenfunctions, decaying for large v like 
1 /v  d+2+v (like 1Iv a+v in the self-diffusion or Rayteigh particle problem) 
violate the law of energy conservation (particle conservation in the self- 
diffusion case). Furthermore, these eigenfunctions do not belong to the 
standard Hilbert space in which the linearized collision operator is self- 
adjoint and positive definite. 
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(5) For particles softer than Maxwell molecules (7 < 0), the solution 
of the initial value problem is unique, and the conservation laws hold, 
provided only that the relevant conserved quantity exists. 

In this paper we have shown these conjectures to be true for the VHP 
model, which describes a two-dimensional (d = 2) gas with a collision rate 
g l ( g x ) " ' g  2 (7 = 2). The conjectures are also supported by results on the 
eigenvalue problem for hard sphere systems obtained by Cornille and 
Gervois, (2) and the (negative) results for arbitrary 7 by Hauge and 
Praestgaard. (8) 
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